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Abstract. In the paper, a well-known predictive functional control strategy is extended to nonlinear
processes. In our approach the predictive functional control is combined with a fuzzy model of the
process and formulated in the state space domain. The prediction is based on a global linear model
in the state space domain. The global linear model is obtained by the fuzzy model in Takagi–Sugeno
form and actually represents a model with changeable parameters. A simulation of the system, which
exhibits a strong nonlinear behaviour together with underdamped dynamics, has evaluated the pro-
posed fuzzy predictive control. In the case of underdamped dynamics, the classical formulation of
predictive functional control is no longer possible. That was the main reason to extend the algorithm
into the state space domain. It has been shown that, in the case of nonlinear processes, the approach
using the fuzzy predictive control gives very promising results.
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1. Introduction

The predictive control has become a very important area of research in the re-
cent years. The principle is based on the forecast of the output signal y at each
sampling instant. The forecast is made implicitly or explicitly according to the
model of the controlled process. In the next step the control is selected, which
brings the predicted process output signal back to the reference signal to minimise
the difference between the reference and the output signal. Fundamental methods
which are essentially based on the principles of predictive control are Clarke’s
method (generalised predictive control [6]), Richalet’s method (model algorithmic
control and predictive functional control [14]), Cutler’s method (dynamic matrix
control [7]), De Keyser’s method (extended prediction self-adaptive control [9]),
and Ydstie’s method (extended horizon adaptive control [18]).

In the paper, the predictive functional control strategy is extended to nonlinear
systems. In this approach the predictive functional control is combined with the
fuzzy model of the process and formulated in the state space domain. The refor-
mulation into the state space domain is needed in the case where we are dealing
with the dynamics with complex poles of the transfer function. In those cases the
state space approach will lead to a simple solution. In the case of underdamped
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dynamics, the classical formulation of predictive functional control is no longer
possible and that was also the main reason to extend the algorithm into the state
space domain.

The prediction of the output variable is based on a global linear model and
formulated in the state space domain. A simulation of the system, which exhibits
a strong nonlinear behaviour together with the underdamped dynamics, has eval-
uated the proposed fuzzy predictive control. The proposed fuzzy predictive func-
tional control algorithm shows very promising results in the case of very difficult
processes, such as strongly nonlinear processes, processes with a long time de-
lay and non-minimum phase processes. The controllers based on the prediction
strategy also exhibit a remarkable robustness with respect to model mismatch and
unmodeled dynamics.

The paper is organised in the following way: Section 2 deals with the concept
of fuzzy identification, in Section 3, the concept of predictive control based on the
fuzzy model in the state space domain is given and, finally, the simulation results
of the proposed control algorithm are shown in Section 4.

2. Fuzzy Identification

Initially, the fuzzy models used for control were models of the controllers. The
knowledge of experienced plant operators was used as the knowledge base in the
fuzzy inference engine. The benefit of such an approach is a direct applicability of
the resulting controller. The same procedure can be used to design a model of the
controlled plant. However, such models have been seldom used since there is no
direct mapping between the model and the controller.

In terms of classical modelling the basic approach in building fuzzy models
is called theoretical modelling. The quantitative knowledge about an object to be
modelled is formulated in the form of if–then rules. The number of the rules and
their form correspond to the model structure, while the shape and the number of
membership functions, the choice of fuzzy-logic operators, and the defuzzification
method correspond to the fuzzy model parameters.

The fuzzy model can be treated as a universal approximator, which can approx-
imate continuous functions to an arbitrary precision [4, 10]. In general, fuzzy logic
universal approximators have several inputs and outputs. Without loss of generality
only one output will be treated here. The approximators with more than one output
can be treated as several approximators in parallel.

A typical Takagi–Sugeno type of rule can be written as

Rj : if x1 is Aj1 and . . . and xN is AjN then y = f j (x1, . . . , xN), (1)

where x1, . . . , xN are inputs, Aji are subsets of the input space, y is the output, and
f j is a function (in general, nonlinear, usually, linear).
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However, the system dynamics can be modelled even by the Mamdani type [11]
of rules where the consequence is symbolic (fuzzy set):

Rj : if x1 is Aj1 and . . . and xN is AjN then y is Bj . (2)

The fuzzy system (fuzzification–inference–defuzzification) can be treated as a non-
linear mapping between inputs and outputs.

2.1. GLOBAL LINEAR MODEL BASED ON A TS FUZZY MODEL

The described fuzzy model represents a static nonlinear mapping between input
and output variables. Dynamic systems are usually modelled by feeding back de-
layed input and output signals. The common nonlinear model structure is a NARX
(Nonlinear AutoRegressive with eXogenous input) model [15], which gives the
mapping between past input–output data and the predicted output

ŷ(k + 1) = F
(
y(k), y(k − 1), . . . , y(k − n+ 1), u(k), . . . , u(k −m+ 1)

)
, (3)

where y(k), y(k − 1), . . . , y(k − n + 1) and u(k), u(k − 1), . . . , u(k − m + 1)
denote the delayed process output and input signals, respectively. The fuzzy model
therefore approximates the function F . Each of the fuzzy model types has its own
learning, a fuzzy reasoning algorithm, and a set of free parameters. The structure
identification in the fuzzy model sense means the specification of operators for
logical connectives, fuzzification, inference and defuzzification algorithms. Once
the structure is determined, the consequent parameters can be estimated using the
least squares method.

Fuzzy modelling or identification aims at finding the set of fuzzy if–then rules
with well defined parameters, that can describe the given I/O behaviour of the
process. In the recent years many different approaches to fuzzy identification have
been proposed in the literature [2, 3, 16].

In this section, TS fuzzy models are discussed. Suppose the following rule base
of the fuzzy system

Ri: if x1 is Ai and . . . and x2 is Bi then y = fi(x1, x2), i = 1, . . . , K, (4)

where x1 and x2 are input variables of the fuzzy system, y is an output variable, and
Ai and Bi are fuzzy sets characterised by their membership functions. The if-parts
(antecedents) of the rules describe fuzzy regions in the space of input variables,
and then-parts (consequence) are functions of inputs, usually defined as

fi(x1, x2) = aix1 + bix2 + ri, i = 1, . . . , K, (5)

where ai , bi , and ri are the consequent parameters.
We assume that the process under investigation can be modelled by the TS fuzzy

model [17] of the form

Ri: if u(k) is Aia and yp(k) is Bib then

yp(k + 1) = a1iyp(k)+ a2iyp(k − 1)+ biu(k)+ ri, i = 1, . . . , K, (6)
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where u(k) and yp(k) are the antecedent variables and yp(k+ 1) is the output vari-
able of the fuzzy system. The output variable is a linear combination of the input
variables in the consequent part, which are u(k) and yp(k) and yp(k − 1). Aia , Bib
are the fuzzy membership functions with ia = 1, . . . , na and ib = 1, . . . , nb. The
numbers of membership functions for the first and the second antecedent variable
define the number of rules K = na × nb. The membership functions have to cover
the whole operating area of the closed-loop system. The output of the TS model is
given by the following equation

yp(k + 1) =
K∑
i=1

(
βi

(
ϕ(k)

)(
a1iyp(k)+ a2iyp(k − 1)+ biu(k)+ ri

))
,

i = 1, . . . , K, (7)

ϕ(k) = [
u(k) yp(k)

]
,

where ϕ(k) represents the multivariate antecedent variable, which consists of process
input and output signals. The normalised degree of fulfilment, βi(ϕ(k)) is obtained
by using a T -norm which is, in our case, a simple algebraic product and is given
by the following equation [16]

βi
(
ϕ(k)

) = T (µAia (u(k)), µBia (yp(k)))∑K
i=1 T (µAia (u(k)), µBia (yp(k)))

= µAia (u(k)) · µBia (yp(k))∑K
i=1 µAia (u(k)) · µBia (yp(k))

, (8)

where µAia (u(k)) and µBia (yp(k)) stand for the membership values [2, 3, 16]. The
normalised degrees of fulfilment for the whole set of rules are written in the vector
form as follows

β
(
ϕ(k)

) = [
β1 β2 . . . βK

]
. (9)

Due to Equations 7 and 9 the process can be modelled in the fuzzy form as

yp(k + 1) = βTa1yp(k)+ βTa2yp(k − 1)+ βTbu(k)+ βTr, (10)

where a1, a2, b, and r stand for fuzzified parameters of the process model. The
fuzzified parameters of the model are constant and are written in the following
equations

aT
1 = [a11 a12 . . . a1K ],

aT
2 = [a21 a22 . . . a2K ],

(11)
bT = [b1 b2 . . . bK ],
rT = [r1 r2 . . . rK ].

The affine TS fuzzy model with a common consequence structure can be expressed
as a global linear model with input–output dependant parameters, which are given
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by the following equations:

ã1
(
ϕ(k)

) = βT(
ϕ(k)

)
a1,

ã2
(
ϕ(k)

) = βT(
ϕ(k)

)
a2,

(12)
b̃
(
ϕ(k)

) = βT(
ϕ(k)

)
b,

r̃
(
ϕ(k)

) = βT(
ϕ(k)

)
r.

This procedure can be viewed as an instantaneous linearization [2, 3] of the process
dynamics.

The estimation of fuzzy global linear model parameters a1i , a2i , bi , and ri for
i = 1, . . . , K will be given next. The algorithm is based on Equation (10), which
describes the fuzzy model of the observed process. We assume the normalised
degrees of fulfilment which are also time-dependent

K∑
i=1

βi(k) = βT(k)I = 1, (13)

where I stands for the unity vector. According to the normalised degrees of fulfil-
ment, Equation (10) can be written in the following form

βT(k)Iyp(k + 1) = βT(k)a1yp(k)+ βT(k)a2yp(k − 1) +
+βT(k)bu(k)+ βT(k)r. (14)

This leads to the form of the fuzzy model described in the following equation

K∑
i=1

βi(k)yp(k + 1) =
K∑
i=1

(
βi(k)a1iyp(k)+ βi(k)a2iyp(k − 1) +

+βi(k)biu(k)+ βi(k)ri
)
. (15)

Equation (15) can be separated into K equations, which represent the participation
of a certain rule in the whole output variable of the fuzzy model. This results in the
following equations:

R1: β1(k)yp(k + 1) = β1(k)a11yp(k)+ β1(k)a21yp(k − 1)+
+ β1(k)b1u(k)+ β1(k)r1,

R2: β2(k)yp(k + 1) = β2(k)a12yp(k)+ β2(k)a22yp(k − 1)+
+ β2(k)b2u(k)+ β2(k)r2, (16)

...

RK : βK(k)yp(k + 1) = βK(k)a1Kyp(k)+ βK(k)a2Kyp(k − 1)+
+ βK(k)bKu(k)+ βK(k)rK.
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To obtain the fuzzy model parameters a1i , a2i , bi , and ri for i = 1, . . . , K, the
following form of the regressor will be used for each rule

ψT
i (k) = [

βi(k)yp(k) βi(k)yp(k − 1) βi(k)u(k) βi(k)1
]
. (17)

Composing the regressors of a certain rule for the whole group of input–output data
pairs, the regression matrix � i is obtained

� i(k) =



ψT
i (1)

ψT
i (2)
...

ψT
i (N)


 , (18)

where N stands for the number of data pairs. The regressor at a certain time instant
k is added to the regression matrix when the following criterion is fulfilled

βi(k) � δ, k = 1, . . . , N, (19)

where δ stands for a small positive number. According to the criterion in Equa-
tion (19) and assuming sufficient input excitation of the process, the matrix �i will
result in a suitable condition number which is important to obtain the fuzzy model
parameters by matrix inversion.

The output variable, which corresponds to the rule Ri is written in the following
form

yip(k + 1) = βi(k)yp(k + 1) (20)

and will be induded in an output data vector

Yi
p =



βi(1)yp(1)
βi(2)yp(2)

...

βi(N)yp(N)


 . (21)

The prediction based on the fuzzy model for the rule Ri in the matrix form is
written as follows

ŷip(k + 1) = ψT
i (k)�i , (22)

where vector �i contains the fuzzy model parameters for the rule Ri

�T
i = [a1i a2i bi ri]. (23)

The fuzzy model parameters for the rule Ri are obtained using the least squares
optimisation method

�i = (
�T
i � i

)−1
�T
i Yi

p. (24)
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By calculating the fuzzy model parameters for the whole group of rules, the fuzzy
model parameters are obtained as it is given in Equation (11).

The parameters of the fuzzy model are estimated on the basis of measured
input–output data using the least squares optimisation method. Our approach is
based on the decomposition of the data matrix � into K submatrices �1, �2, . . . ,

�K and due to this decomposition the parameters of each rule are calculated sep-
arately. This leads to a better estimate of the fuzzy parameters. The variances of
the estimated parameters are smaller in comparison with the classical approach
given in literature [2, 3, 16, 17]. This is due to better conditioning of submatrices
�1, �2, . . . ,�K in comparison to the conditioning of the whole data matrix �.

The described instantaneous linearization gives the parameters of the global lin-
ear model that depends on the multivariate antecedent vector ϕ(k). In other words,
the model parameters are spanned by the antecedent vector, which is defined by
the fuzzy model structure. The global linear parameters of the process can be used
directly in the case of adaptive and predictive control where the controllers adapt
to the dynamic changes on-line.

3. Predictive Functional Control in State Space

The Model-based Predictive Control (MBPC) is a control strategy based on the
explicit use of the dynamic model of the process. The process model is used to
predict the future behaviour of the process output signal over a certain horizon and
to evaluate control actions to minimize a certain cost function [5, 6, 7, 9, 14, 18].
The predictive control law is in the case of linear systems obtained analytically by
minimizing of the following criterion,

J (k, u) =
N2∑
j=N1

(
ym(k + j | k)− yr (k + j | k))2 + λ

Nu∑
j=1

u2(k + j), (25)

where ym(k + j | k), yr(k + j | k) and u(k + j) stand for j -step ahead predic-
tion of the process output signal, the reference trajectory, and the control signal,
respectively. Nl and N2 are the minimum and maximum prediction horizon, Nu
stands for the control prediction horizon and λ weights the relative importance of
control and output energies. MBPC is the name for several different techniques all
based on the same basic principles. Originally, the algorithms have been developed
for linear systems. The idea of prediction has been extended to nonlinear systems
in our approach. The basic principle from Equation (25) can be implemented in
the case of nonlinear systems only by use of optimisation techniques, in general.
To overcome the problem of optimisation, we try to introduce the basic princi-
ples of predictive functional control (PFC) [12, 13, 14] which seems to be most
appropriate. The PFC control strategy is based on the coincidence of the model
output prediction and reference model output prediction at a certain horizon called
the coincidence horizon. This is the main reason why we are trying to combine
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the PFC control strategy with nonlinear fuzzy models. The PFC algorithm can be
seen as an especial example of the criterion in Equation (25), where N1 is equal
to N2 and λ is equal to zero. In our approach, the prediction of the process model
output is obtained by using the fuzzy global linear model of the process and is
given in the state space domain. This formulation has certain advantages over the
classical approach, especially in the case of complex poles of the global linear
transfer function. In this section, the basics of predictive functional control in the
state space domain (SSFPFC) are introduced.

The fundamental principles of predictive functional control are very strong and
easy to understand because they are natural and they can be rapidly grasped. The
state space formulation of the PFC has potential advantages in the case of at least
second order systems. We assume the process model written in the form of the
fuzzy global linear model. The model is of the second order given by the following
difference equation

ym(k + 1) = ã1(k)ym(k)+ ã2(k)ym(k − 1)+ b̃1(k)u(k)+ r̃(k), (26)

where ã1(k), ã2(k), b̃1(k), and r̃(k) stand for global linear parameters of the second
order system which are obtained as shown in the previous section. The prediction
of the process output depends on initial values, the input variable u(k) and a scalar
offset r̃(k). In the next step Equation (26) is rewritten in the form that is suitable
for formulation in the state space domain [1]

ym1(k + 1)− ã1(k)ym1(k)− ã2(k)ym1(k − 1) = b̃1(k)u(k),

ym2(k + 1)− ã1(k)ym2(k)− ã2(k)ym2(k − 1) = r̃1(k), (27)

ym(k + 1) = ym1(k + 1)+ ym2(k + 1).

According to the difference equation in Equation (27), the global linear model in
the state space domain is obtained and described by the following difference matrix
equations as a response to the input variable u(k)

xm1(k + 1) = Ãm(k)xm1(k)+ B̃m1(k)u(k),

ym1(k) = C̃m1xm1(k), (28)

Ãm(k) =
[

0 1
ã2(k) ã1(k)

]
, B̃m1(k) =

[
0

b̃1(k)

]
, C̃m1 = [ 1 0 ]

and as a response to the model residue r̃(k)

xm2(k + 1) = Ãm(k)xm2(k)+ B̃m2r̃(k),

ym2(k) = C̃m2xm2(k), (29)

Ãm(k) =
[

0 1
ã2(k) ã1(k)

]
, B̃m2 =

[
0
1

]
, C̃m2 = [ 1 0 ] .

Our goal is to define the control law u(k) to force the whole closed loop system
to behave like it is defined by the reference model trajectory. The reference model



FUZZY PREDICTIVE FUNCTIONAL CONTROL 291

trajectory in the state space domain is given in Equation (30):

xr (k + 1) = Arxr (k)+ Brw(k),
(30)

yr(k) = Crxr (k),

where w(k) stands for the reference signal, and yr(k) for the reference model tra-
jectory. The reference model parameters should be chosen to fulfil Equation (31)
to enable the reference trajectory tracking. In other words, the gain of the reference
model should be equal to one.

Cr (I − Ar )
−1Br = 1. (31)

In the case of fuzzy predictive functional control, a single horizon is assumed which
is called the coincidence horizon H and the constant future manipulated variable
u(k+i) = u(k), i = 1, . . . , H , is taken into account. At this horizon the prediction
of model output is the same as the reference model trajectory. The control signal
is calculated at each time instant to force the process output or the process model
output to be coincidental with the reference model trajectory at a certain horizonH .
That is the main feature of the PFC algorithm which allows the use of nonlinear
process models. In the case of general MBPC, the nonlinear problem can be solved
only by numerical optimisation due to the criterion given in Equation (25).

TheH -step ahead prediction of the process model output is calculated assuming
constant global process parameters over the whole prediction horizon. The predic-
tion is given as a sum of two responses. The first one is given as the response to the
control signal

xm1(k +H | k) = ÃH
mxm1(k)+ (

ÃHm − I
)(

Ãm − I
)−1

B̃m1u(k),
(32)

ym1(k +H | k) = C̃m1
(
ÃH
mxm1(k)+ (

ÃH
m − I

)(
Ãm − I

)−1
B̃m1u(k)

)
,

and the second one as the response to residue

xm2(k +H | k) = ÃH
mxm2(k)+ (

ÃH
m − I

)(
Ãm − I

)−1
B̃m2r̃(k),

(33)
ym2(k +H | k) = C̃m2

(
ÃH
mxm2(k)+ (

ÃH
m − I

)(
Ãm − I

)−1
B̃m2r̃(k)

)
.

The H -step ahead prediction of process model output is given as a sum of both
predicted signals and is denoted in the following equation

ym(k +H | k) = ym1(k +H | k)+ ym2(k +H | k). (34)

The prediction of the reference model trajectory for H steps ahead is given in the
next equation

xr (k +H | k) = AH
r xr (k)+ (

AH
r − I

)(
Ar − I

)−1
Brw(k),

(35)
yr(k +H | k) = Cr

(
AH
r xr (k)+ (

AH
r − I

)(
Ar − I

)−1
Brw(k)

)
.
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The main idea of the PFC is the equivalence of the process objective increment and
the process model output increment at a certain horizon. The process objective in-
crement #p is defined as the difference between the predicted reference trajectory
yr(k +H) and the actual process output signal yp(k)

#p = yr(k +H | k)− yp(k). (36)

Assuming Equation (35) the objective increment #p is defined as follows

#p = CrAH
r xr (k)+ Cr

(
AH
r − I

)(
Ar − I

)−1
Brw(k)− yp(k). (37)

The process model output increment #m is defined by the next equation

#m = ym(k +H | k)− ym(k). (38)

According to Equation (34), the model output increment is as follows

#m = ym1(k +H | k)+ ym2(k +H | k)− ym(k). (39)

Equation (40), which demands the equivalence of the process objective incre-
ment and the process model output increment, defines the control law of the PFC
algorithm

#m = #p. (40)

The control law of the PFC is obtained in explicit analytical form as

u(k) = yr (k +H | k)− C̃m1ÃH
mxm1(k)− ym2(k +H | k)+ e(k)

C̃m1(ÃH
m − I)(Ãm − I)−1B̃m1

,

e(k) = ym(k)− yp(k),
(41)

yr(k +H | k) = Cr

(
AH
r xr (k)+ (

AH
r − I

)(
Ar − I

)−1
Brw(k)

)
,

ym2(k +H | k) = C̃m2
(
ÃH
mxm2(k)+ (

ÃH
m − I

)(
Ãm − I

)−1
B̃m2r̃

)
.

4. Simulation Example

The predictive approach discussed in the previous section has been tested by sim-
ulation. The test plant model is a magnetic positioning system that consists of an
electromagnet and a mass-spring-friction system. The mass moves in a horizon-
tal position due to the electromagnetic force produced by the electromagnet. The
electromagnetic field depends on electric current through the electromagnet. The
equations, which describe the dynamics of the system, are written in the following
form

Mÿ + B(y)ẏ +K(y)y = Fm, Fm = c
i2

y2
, (42)
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Figure 1. The plant and fuzzy model characteristics.

where y, M, B(y), K(y), and Fm stand for the translation displacement, the
mass of moving body, the viscous-frictional coefficient which is a function of
displacement, the spring coefficient which also depends on displacement, and the
electromagnetic force, respectively. Look-up tables give the viscous-frictional and
the spring coefficients.

The main goal of the electromechanical system is to control the position of
the mass displacement y by the electric current through the electromagnet i. The
system is strongly nonlinear and also has an underdamped dynamics, due to the
system’s coefficient. The control demand is the fastest closed-loop response with-
out overshoot in the whole operating region. This goal is impossible to obtain using
classical linear controllers due to the nonlinear process gain.

Assuming unknown relations for viscous-frictional coefficient B, the spring
coefficient K and the electromagnetic coefficient c, the experimental fuzzy mod-
elling was used to model the system dynamics. The process can be presented as a
model of approximately second order dynamics, with changeable process gain as
a function of the operating point.

The characteristics of the plant behaviour are shown in Figure 1, where the static
map and process gain measured on data are shown. It is shown that the process
gain varies significantly according to the operating point. The process dynamics
is nonlinear and of second order and can be modelled by the following difference
equation

y(k + 2) = F
(
y(k), y(k + 1), i(k)

)
. (43)
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Figure 2. The linguistic variable of i.

The developed fuzzy model consists of three second order rules. The control signal
i is saturated between 4 and 20 mA. The linguistic variable of i is shown in Figure 2
where we see that the operating domain is divided into three membership functions.
The fuzzy parameters of the model depend on the physical variable i(k), which is
a manipulated variable also denoted as u(k).

The fuzzy model in TS form presented by Equation (44) is obtained by the
fuzzy identification method described in Section 2. The signals were sampled with
sampling time Ts = 0.1 s.

R1: if u(k) is I1 then yp(k + 1) = 1.3076yp(k)− 0.6771yp(k − 1) +
+ 0.0009u(k) − 0.0019,

R2: if u(k) is I2 then yp(k + 1) = 1.3106yp(k)− 0.6801yp(k − 1) +
(44)+ 0.0016u(k) − 0.0019,

R3: if u(k) is I3 then yp(k + 1) = 1.3160yp(k)− 0.6761yp(k − 1) +
+ 0.0024u(k) − 0.0019.

The validation of the fuzzy model is shown in Figure 3, where the output of the
simulation fuzzy model and the output of the process are compared. It can be seen
that nonlinear dynamics of the electromagnetic positioning system is sufficiently
modelled.
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Figure 3. The validation of the fuzzy model.

Figure 4. Output, reference-model and control signal of PFC control of the electromagnetic
positioning system.
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The fuzzy model in Equation (44) was used as an internal model in the pre-
dictive functional algorithm. The global linear parameters are calculated instanta-
neously at each sampling instant as shown in Equation (12). In respect of these
parameters, the predictive functional control law is calculated according to Equa-
tion (41). In our application, the coincidence horizon has been chosen as H = 3
and the reference model is given by the following transfer function

Gr

(
z−1

) = 0.09z−1

1 − 1.4z−1 + 0.49z−2
(45)

with the sampling time Ts = 0.1 s.
The process output y(k) and the reference model output yr(k) are shown in

Figure 4. The main demand of the control algorithm is to control the position of
the mass, to have the fastest tracking response without overshoots. The problem
of optimal control is difficult because of the nonlinear system behaviour. The re-
sults that have been obtained using the proposed fuzzy predictive algorithm exhibit
a very good performance in both modes, in the tracking mode and disturbance
rejection mode.

5. Conclusion

In this paper, the fuzzy predictive control scheme is presented. The new formu-
lation of the fuzzy predictive scheme was motivated by the fact that the classical
approach is not suitable for the systems with underdamped dynamics. Regarding
the simulation experiments, it can be seen that the novel algorithm introduces
a great performance in the presence of nonlinearity and unmeasured dynamics.
The main advantage in comparison to the other modern techniques is simplicity
together with excellent performance.
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